mlflow . pytorch . autolog ( ) net = nn . Linear ( 11 , 1 ) loss_function = nn . L1Loss ( ) optimizer = torch . optim . Adam ( net . parameters ( ) , lr = 1e - 4 ) csv_url = ( "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv" ) data = pd . read_csv ( csv_url , sep = ";" ) train , test = train_test_split ( data ) train_x = train . drop ( [ "quality" ] , axis = 1 ) test_x = test . drop ( [ "quality" ] , axis = 1 ) train_y = train [ [ "quality" ] ] test_y = test [ [ "quality" ] ] train_x = torch . tensor ( train_x . values . astype ( np . float32 ) ) train_y = torch . tensor ( train_y . values . astype ( np . float32 ) ) test_x = torch . tensor ( test_x . values . astype ( np . float32 ) ) epochs = 5 for epoch in range ( epochs ) : optimizer . zero_grad ( ) outputs = net ( train_x ) loss = loss_function ( outputs , train_y ) loss . backward ( ) optimizer . step ( ) exp_name = "mlflow-test-torch" mlflow . set_experiment ( exp_name ) exp_details = mlflow . get_experiment_by_name ( exp_name ) with mlflow . start_run ( run_name = exp_name ) : predictions = pd . DataFrame ( net ( test_x ) . detach ( ) . numpy ( ) ) ( rmse , mae , r2 ) = eval_metrics ( test_y , predictions ) mlflow . log_metric ( "rmse" , rmse ) mlflow . log_metric ( "r2" , r2 ) mlflow . log_metric ( "mae" , mae ) mlflow . pytorch . log_model ( net , "model" )
Copy